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An Assessment of the Use of Chimpanzees in Hepatitis C
Research Past, Present and Future: 2. Alternative

Replacement Methods

Jarrod Bailey
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Summary — The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report asso-
ciated with this paper (7: Validity of the Chimpanzee Model), in which it was concluded that claims of past
necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were
unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experi-
mentation, it was proposed that it must now be considered redundant — particularly in light of the
demonstrable contribution of alternative methods to past and current scientific progress, and the future
promise that these methods hold. This paper builds on this evidence, by examining the development of
alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have
contributed, and are continuing to contribute substantially, to progress in this field. It augments the argu-
ment against chimpanzee use by demonstrating the comprehensive nature of these methods and the valu-
able data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more
relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and
vaccines. Consequently, there is no sound argument against the changes in public policy that propose a
move away from chimpanzee use in US laboratories.
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Introduction

Hepatitis C affects hundreds of millions of people
worldwide, including an estimated four million in
the USA and five million in Europe (1-3). Serious
consequences include liver cirrhosis and hepatocel-
lular carcinoma (HCC), and around 5% of infected
people eventually die as a result (4—6). It is there-
fore a significant healthcare burden, which is set to
increase dramatically as the number of infected
people rises (2). Research to understand the virus
and the disease has been a priority since its dis-
covery in 1989 (7), and this research has involved
extensive use of chimpanzees.

However, invasive research involving the use of
captive chimpanzees has been banned, or at least
severely restricted, across much of the world (8).
The continued use of chimpanzees in invasive
research in the USA is therefore highly controver-
sial, and there exist compelling arguments against
it — for example, the extent of suffering of those
chimpanzees involved, and concern over the lack of
human relevance of the data produced (8-17). The
latter — 1i.e. the scientific validity of chimpanzee
experimentation with respect to human medicine
— has been extensively investigated with respect
to hepatitis C in the associated paper, 1. Validity of

the Chimpanzee Model (18). This previous paper,
which examined, in detail, claims concerning the
past contributions of chimpanzee experiments to
hepatitis C research, as well as the need for chim-
panzee use in current and future investigations,
concluded that these claims were exaggerated and
unjustifiable, respectively. Major scientific, ethi-
cal, economic and practical caveats of the chim-
panzee model in hepatitis C virus (HCV) research
were highlighted, and the contributions of other,
non-chimpanzee methods of research were evalu-
ated. On balance, it was concluded that extensive
chimpanzee use in the study of the virus and the
disease has made relatively negligible contribu-
tions to the body of knowledge and to tangible
progress, as compared to non-chimpanzee meth-
ods, and that the chimpanzee model must be con-
sidered to be scientifically redundant, given the
array of alternative methods of inquiry now avail-
able.

While Paper 1 makes this argument in its own
right by evaluating the degree to which chim-
panzee data are predictive of and relevant to
human HCV infection, and by illustrating the
extent of the contribution of other methods, this
complementary paper makes an important further
contribution, by reviewing the breadth and com-
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prehensive nature of non-chimpanzee methods,
and illustrating how in vitro approaches, sup-
ported by clinical, epidemiological, ex vivo and in
silico methods, can provide all the necessary infor-
mation about HCV and its pathology to enable the
development and testing of HCV therapies.

In Vitro Systems to Study HCV

In the search for a more complete understanding of
the HCV life-cycle, in order to facilitate the discov-
ery of new therapeutics, one thing above all else
has been cited as a serious impediment and rate-
limiting factor, namely, the lack of a reliable and
robust cell culture system (e.g. 1, 19-28). This is
not surprising, as cell and viral culture are
acknowledged as having been pivotal in the devel-
opment of vaccines against other viruses, such as
the polio and measles viruses (29, 30). This is
because cell culture approaches, among other
things:

— permit the investigation of the entire viral life-
cycle, from host-cell attachment and entry,
through replication, to the assembly and
release of progeny virions;

— facilitate reverse-genetics analyses to elucidate
detailed information about viral genomics and
proteomics, including interactions with host
factors;

— permit the study of the humoral immune
response and neutralising antibodies to aid vac-
cine development; and

— greatly assist in the identification of therapeu-
tic targets and in the screening and testing of
anti-viral compounds (1, 27, 31).

In view of their importance, many attempts have
been made to establish cell culture systems for
HCV. As relatively long ago as 2001, reviews cited
dozens of systems that had been assessed and that
had succeeded to varying degrees (25). More
recently, many good reviews have outlined devel-
opments in this field and have illustrated the
major breakthroughs these represent and the
insights and progress they should deliver (1, 27,
32-34).

Infection of cultured cells with HCV

The simplest approach involves the straight-
forward infection of primary human cell cultures
with HCV-infected sera. This has been successfully
achieved with primary fetal (28, 35, 36) and non-
fetal (37, 38) human hepatocytes and primary
human peripheral blood mononucleocytes (PBMCs;
39). While some investigators reported that the

efficiencies of these systems could be low and/or
hard to control, others described relatively long-
term, reliable, efficient and reproducible systems
that supported HCV infection and replication.
These successes were reflected in opinions that
this approach constitutes a valuable model for the
study of HCV replication, the identification of rele-
vant viral and cellular factors associated with suc-
cessful infection, the evaluation of antiviral
agents, the further analysis of serum infectivity,
and the cloning of novel HCV genomes from
patients (28, 37, 38).

At the same time, various immortalised cell lines
were exhibiting support of HCV infection and
replication, such as the human T-lymphocyte and
B-lymphocyte cell lines MOLT-4Ma, HPB-Ma, MT-
2, and Daudi (25, 40, 41). Some of these cell lines
were able to support long-term (> 12-month) infec-
tions (42, 43), and demonstrated a good correlation
of their measured infectivity titres with the infec-
tivity titres measured in chimpanzees (42). The
immortalised human hepatoma cell lines, HepG2,
Huh-7 and PH5CH (25, 44, 45), also supported
HCV infection and replication, and efforts to
increase the efficiency of these and the lympho-
cyte-based systems led to the culture of primary
hepatocytes and PBMCs from persistently-infected
patients (46, 47) that produced higher viral titres.
Research involving infected cell lines such as these
has led to some important discoveries, and
progress was being realised in improving cell cul-
ture conditions and performance. For instance,
this approach revealed that the low-density
lipoprotein receptor (LDLR) is involved in the
process of HCV entry into the host cell (48), and a
human B-cell line, SB, was shown to continuously,
reliably and reproducibly produce infectious HCV
virions, which were subsequently able to infect a
number of human cell lines, including hepatocytes
in vitro, potentially facilitating the study of the
entire viral life-cycle (49). However, by the time
these discoveries were made, these culture sys-
tems were generally not deemed robust enough to
support reliable in-depth studies of the HCV life-
cycle and the development of anti-viral agents.
This, combined with the difficulty of sourcing and
maintaining primary cells, and the desire to create
a system that enabled infection with defined HCV
genomes to facilitate reverse genetics studies,
meant that attempts at viral culture had pro-
gressed from using virus-containing sera or
infected cells to the use of HCV molecular clones.

Infectious molecular clones of HCV

As one of the more salient examples put forward by
advocates of chimpanzee research of the impor-
tance of chimpanzees as a research tool, a thor-
ough account of the development and use of
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infectious molecular clones in HCV research is
given in the associated paper (18). In summary,
HCV clones are produced in vitro by using HCV
genomic RNA from infectious serum samples as a
template. These clones then serve as templates for
the production of RNA molecules with precise 3’
termini, representing HCV genomic RNAs (50),
which can be used in vitro or in vivo to initiate the
viral life-cycle (32). To overcome the initially
unsuccessful attempts which utilised screened
clones to infect chimpanzees (51, 52), lessons were
learned from previous work with other related
viruses (e.g. 53), in which consensus sequences of
the specific viral isolates being used were deter-
mined, in order to overcome mutation effects
(54-56). While it has been asserted that the devel-
opment of infectious clones was dependent on
chimpanzee use (22, 24), there existed several con-
temporaneous in vitro approaches for which inves-
tigators had claimed validity for the study of the
HCV life-cycle, including replication, persistence
and pathogenicity, and to test anti-viral agents
(57, 58). It had been claimed that problems existed
with regard to the measurement of HCV replica-
tion in these in vitro systems (59), but a number of
sensitive and reliable methods were actually avail-
able, to specifically detect and quantify HCV
replicative activity. For example:

— the reverse transcription-polymerase chain
reaction (RT-PCR) and/or ribonuclease protec-
tion assay of negative strand RNA intermedi-
ates only produced during viral replication;

— the incorporation of radioactive nucleosides,
such as [3H] uridine, into de novo RNA mole-
cules;

— the in situ RT-PCR of HCV RNA present in
long-term cultured cells;

— the infection of freshly cultured non-infected cells
with culture medium from transfected cell lines,
indicating the production of infectious HCV;

— the immunostaining of viral proteins; and

— the visualisation of virus or virus-like particles
via electron microscopy (57, 58).

Furthermore, recent examinations of 14 HCV
clones and their properties in vitro and in vivo (54,
59) list parallel references for the in vitro and in
vivo studies of each HCV clone. Finally, it may be
true that the existence of an established in vivo
system which used chimpanzees for determining
the clone infectivity of other viruses, led to the con-
tinuation of chimpanzee use out of convenience,
rather than necessity (52).

While chimpanzees continued to be used to
investigate the characteristics of HCV infectious
clones, many in vitro approaches were highly
informative. For example, with regard to the HCV
proteins, in vitro studies furthered our under-

standing of sub-cellular localisation and assembly
(60-63), function (60, 64), effects on host-cell
growth and gene expression (65, 66), and effects on
IFN-induced intracellular signalling (67). Such
approaches had also elucidated the anti-viral
effects and modes of action of interferon (IFN) and
ribavirin (68, 69), the role of CD26 in HCV infec-
tion (70), the determinants of membrane associa-
tion of the viral polymerase (71), and various
properties and characteristics of the HCV NS3-
NS4A complex (72).

Subgenomic and genomic replicon systems

Replicons (autonomously replicating HCV-derived
RNASs) perhaps represented the first highly reliable,
reproducible and robust in vitro method to investi-
gate HCV replication. Their development was con-
sidered a “great leap forward” (1), a “significant
advance” (31), a “milestone” (27), and a “highlight”
and a “major breakthrough” (50), which greatly facil-
itated research into many aspects of the HCV life-
cycle. The importance of replicons is reflected in
their citation, alongside full recombinant HCV cul-
ture, in discussions of the crucial contributions in
vitro approaches have made to HCV research (6, 27).
These contributions include, for example, the eluci-
dation of the roles of specific HCV genome segments
and proteins in replication, the determination of
intracellular HCV protein localisation, the charact-
erisation of virus—host interactions, and the identifi-
cation of anti-viral agents (20, 32—-34, 73—75). Many
more examples, too numerous to discuss here, are
summarised in a recent very detailed and compre-
hensive review, including, for example, the impor-
tance of the HCV untranslated regions (UTRs) and
other cis-acting elements in viral replication, the
elucidation of roles, functions and criticality of HCV
viral proteins and protein domains, the involvement
of various host proteins with the endoplasmic retic-
ulum, the association of the HCV core protein with
host lipids, and the screening and testing of viral
inhibitors (1).

Subgenomic replicons comprise truncated viral
minigenomes containing, for instance, the HCV 5°
and 3” UTRs plus the viral polymerase gene, but
also direct the synthesis of a marker gene (such as
the neomycin resistance gene). This permits the
selection of stable cell lines containing highly repli-
cation-competent HCV RNAs (1, 50). Their devel-
opment, which notably was contemporary to, and
independent of, experiments involving infectious
molecular clones in chimpanzees, was based on
prior experiments involving the related
Flaviviridae Kunjin virus (76), the bovine viral
diarrhoea virus (BVDV) (77), and poliovirus (78),
in which transcripts from subgenomic molecular
clones were shown to be capable of autonomous
intracellular replication in vitro.
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The first subgenomic replicon for HCV was based
on a consensus genotype 1b sequence derived from
a chronically infected patient, and exhibited effi-
cient replication when transfected into Huh7
human hepatoma cell lines (26). Subsequent in vitro
analyses revealed the evolution of various adaptive
mutations in the subgenomes, which further
increased their replicative capacities by several
orders of magnitude, even up to 10,000-fold (33, 79,
80). Knowledge of these adaptive mutations permit-
ted the development of extremely efficient in vitro
replicon systems, which rendered the inclusion of
selectable marker genes redundant. The consequent
exclusion of heterologous RNA from replicons,
among other things, led to a further increase in
replication efficiency (81), facilitated the study of
unmodified HCV replicons in a more ‘native’ envi-
ronment, assisted the development of full-length
replicon systems (82) — including those involving
other HCV genotypes (e.g. 1a [81] and 2a [83]), and
opened the door to the in vitro investigation of full
viral assembly (1). Furthermore, it was discovered
that the cell line itself — even different passages of
the same cell line — could affect replication effi-
ciency by up to 100 times (84), and that ‘curing’ cell
lines of HCV RNA via IFN treatment could lead to
subsequent higher permissiveness (85). The identi-
fication, isolation and use of highly permissive cell
lines have also facilitated the use of the replicon sys-
tem by increasing efficiency. Examples of these cell
lines include the Huh7.5 (85), Huh7.5.1 (33) and
Huh7-Lunet (86) lines.

Whilst replicon systems were proving to be
extremely valuable for research into most aspects
of the HCV life-cycle, they were proving unsuitable
for the investigation of viral assembly and release.
Although full-length replicons were able to pro-
duce HCV viral proteins, many did not produce
detectable progeny virions — presumably due to
adaptive cell culture mutations favouring replicon
replication at the expense of viral assembly and
release (1). However, some systems did reliably
produce infectious progeny virions (87), despite
this being at a low level (1). Fortunately, alterna-
tive and highly productive in vitro approaches to
this type of study have been developed. The use of
HCV virus-like particles (VLPs) and HCV
pseudoparticles (HCVpp) has been productive, and
trans-encapsidation of HCV subgenomic replicons
has been achieved via the baculovirus-directed
expression of HCV structural proteins (88), the
generation of a packaging cell line (89), and the use
of helper viruses (90).

HCYV virus-like particles (VLPs) and HCV
pseudoparticles (HCVpp)

There are a number of detailed and extensive
recent reviews of the application of these methods

to HCV research, and of the data they can provide
with regard to HCV binding, membrane fusion and
entry, antibody-mediated neutralisation, screening
of anti-HCV agents and vaccine development, and
other aspects of the HCV life-cycle (1, 27, 33).
Briefly, the techniques range from the simple
expression of the HCV envelope glycoproteins (E1
and E2) in cell culture, through the expression of
HCV structural proteins by using recombinant
baculovirus, to the creation of HCVpp in which the
HCV envelope proteins are incorporated into other
enveloped viruses, in place of their own envelope
proteins.

Experiments involving the expression of HCV
envelope proteins in cell lines implicated the
CD81 cell-surface protein and scavenger receptor
class B type I protein (SR-BI) as mediators, for
example, of HCV attachment and entry (91-93).
However, more-advanced investigations with
bona fide VLPs were more productive, permitting
detailed in vitro studies of virion assembly,
genome encapsidation, virus—host interactions
and vaccine research.

VLPs were first reported following the expres-
sion of HCV structural proteins by using the
eukaryotic baculovirus expression system,
whereby these proteins self-assembled into
enveloped VLPs with highly similar biophysical
properties to virions isolated from HCV-infected
humans (94). These VLPs have been subsequently
used in a number of ways. For example:

— to elucidate humoral immunity in acute and
chronic hepatitis C patients, including respon-
ders and non-responders to IFN therapy (95);

— to determine structural differences in HCV enve-
lope proteins, depending on their context, and
consequent effects on CD81 binding (96, 97);

— to study early events in host-cell entry, includ-
ing the role of lipoproteins (98, 99) and low-den-
sity lipoprotein (LDL) receptors (100);

— to demonstrate the role of cell-surface heparan
sulphate proteoglycans (HSPGs) in HCV enve-
lope-target cell interaction (101), and to map
the viral and cellular determinants of this inter-
action (102);

— to establish the crucial involvement of the
claudin-1 (CLDN-1) protein late in the viral
entry process (103);

— to study HCV uptake, antigen processing and
presentation in human dendritic cells (104);
and

— to analyse the genome-wide host-cell response
following HCV binding of human liver and
hepatoma cells (105).

Infectious HCVpp contributed to the study of
early events in HCV infection further, as, unlike
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VLPs, HCVpp are infectious and permit the func-
tional investigation of putative receptors involved
in cell entry (106). HCVpp are formed via the
transfection of human cell lines with: a) expres-
sion vectors encoding the HCV envelope proteins
(E1 and E2); b) a ‘viral genome’ that can be encap-
sidated, which contains a reporter gene such as
the green fluorescent protein; and c) a ‘packaging
construct’ encoding core proteins from another
enveloped ‘carrier’ virus, such as murine
leukaemia virus (MLV; 106) or human immunod-
eficiency virus (HIV; 107). Upon expression
within the cell of the transfected constructs,
assembly of the hybrid virion occurs, which com-
prises an encapsidated RNA ‘genome’ containing
the reporter gene, with the HCV envelope pro-
teins at the virion surface. These HCVpp are
secreted into the culture medium and can be sub-
sequently used in assays for infectivity, since they
are easily quantifiable via the measurement of
reporter gene expression (106—109).

HCVpp systems are robust and reliable, and
have therefore facilitated many important dis-
coveries in HCV research, including the elucida-
tion of HCV tropism, the identification of HCV
envelope glycoproteins and host-cell receptors/co-
receptors, and the determination of their involve-
ment in the infection process. Also, HCVpp
systems have permitted measurement of the
extent of neutralisation by patient sera and mon-
oclonal antibodies, leading to the mapping of
envelope protein neutralisation epitopes, which
is highly relevant to vaccine studies (for exten-
sive and comprehensive reviews, see 1, 33,
110-112). For example, HCVpp experiments
involving a variety of HCV envelope proteins of
different genotypes have:

— demonstrated the effects on HCV infectivity of
lipoproteins such as high-density lipoproteins
(HDL) and low-density lipoproteins (LDL)
(113-119);

— permitted the analysis of cross-neutralisation,
as well as genotype-specific neutralisation (106,
119-125); and

— elucidated the roles of CD81 (92, 107, 114,
126-129), SR-BI (107, 114, 116, 118), clathrin
(107, 114, 130-132), claudin-1 (103), C-type
lectins (133, 134), and pH (107, 114) in viral
attachment and entry.

Overall, the HCVpp system was clearly techni-
cally uncomplicated, versatile, highly productive
and an extremely important facet of HCV
research. However, HCVpp involve chimaeric
virions and can only be used to investigate the
early steps of the infective process. Therefore, a
more native, physiologically relevant and com-
prehensive ‘full life-cycle’ system was still
required.

Full life-cycle infectious HCV cellular clones
(HCVce)

The above information underscores the progress
made in the development of in vitro techniques to
study the life-cycle of HCV and identify antiviral
therapies (33). A suite of approaches involving
HCV-infected primary and immortalised cell lines,
subgenomic and full-length replicons, and HCV
VLPs and pseudoparticles, facilitated the investi-
gation of many aspects of the virus and the disease
— for example, virus attachment and entry into
host cells, its replication and the assembly of prog-
eny virions, host defences against HCV infection,
host—virus interactions, immune escape, and the
screening of anti-viral agents. Each method has
some limitations. For instance, primary cell cul-
ture can be demanding, and replicons harbour
adaptive mutations. Also, VLPs are not secreted by
host cells, and HCVpp are hybrids with non-HCV
cores, and they are not associated with lipoproteins
(33). A full life-cycle system was therefore neces-
sary, in which all aspects of HCV infection, includ-
ing reverse genetics studies, could be investigated
more easily and more reliably, all in the context of
the complete viral life-cycle.

The major breakthrough in the ultimate realisa-
tion of HCVce was made in 2005, when the devel-
opment of the first in vitro system supporting the
infection, replication and production of infectious
HCV virions was announced (135). This system
utilised the genotype 2a clone, JFH1, derived from
an HCV isolate obtained from a Japanese patient
with fulminant hepatitis (136), which was tran-
scribed in vitro and the RNA transfected into Huh7
cells. This was based on earlier experiments
involving a JFH1 subgenomic replicon, which,
unlike all similar replicons, did not require adap-
tive mutations in order to be highly replicative in a
number of different cell lines (83, 137, 138). The
presence of adaptive mutations in replicons had
been widely assumed to favour replication at the
expense of the formation of viral progeny (74, 139).
It was therefore hypothesised that these JFH1
replicons might be more conducive to the formation
of new virus particles — hence the successful
experiments of Wakita et al. (135).

Subsequent investigations greatly improved this
culture system. The transfection of other cell lines,
such as Huh7.5 and Huh7.5.1, with JFH1 tran-
scripts resulted in increased replication and viral
titres, in systems that could be initiated at low mul-
tiplicities of infection, serially passaged, and which
reflected the clinically-observed effects of IFN treat-
ment (140, 141). Furthermore, the construction of
JFH1 chimaeras with other HCV isolates, such as
J6, Conl and H77S, has also improved efficiency
(140, 142, 143), and has succeeded both for
intragenotypic chimaeras as well as intergenotypic
chimaeras — the latter being crucial for research
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into other HCV genotypes and the development of
anti-viral therapies against them (144-146). The
serial passage of Huh7.5 cells infected with chi-
maeric J6/JFH1 HCV has given rise to culture vari-
ants with adaptive mutations, which demonstrate
enhanced infectivity, and which could be useful for
the study of HCV entry (147). Dedicated systems for
HCV genotype 1a (strain H77 [87]) and 4a (148) also
exist, and are showing promise. In addition, alterna-
tive systems involving the transfection of DNA plas-
mid clones instead of RNA transcripts are also in the
course of development for HCV genotype 1a, 1b and
2a strains. In these systems, intracellular ribozyme-
directed cleaving of transcripts produces functional
viral RNA molecules that give rise to HCV particles
for each strain (149).

While these HCVee systems are relatively recent
developments, they have already been used to pro-
vide useful data on the life-cycle of the virus. They
have corroborated with and expanded upon HCV
receptor experiments, by illustrating, for example,
that HDL and the CD81 and SR-BI proteins are
required for HCV infection (150-154), and that viral
entry is mediated by clathrin vesicles (130). HCVce
have also demonstrated the close association of
apolipoprotein C1 (ApoC1) with HCV. ApoC1 associ-
ates with HCV intracellularly via its C-terminus
during viral morphogenesis, and plays a crucial role
in HCV infectivity (155). HCVce have also shown,
via small interfering RNA (siRNA) analysis of 140
cellular-membrane trafficking genes, that HCV
replication utilises host gene products involved in
cytoskeletal regulation and endocytic trafficking,
and also a critical lipid kinase PI4K-IIIalpha (156).

Summary and outlook of in vitro systems

Current consensus endorses and validates the
assertions that cell culture systems were impera-
tive for the progress of HCV research. Given the
realisation and continued development of the in
vitro methods summarised here, the prospects for
further significant advances in the understanding
of HCV, its life-cycle, the ensuing pathology, and
prophylactic and therapeutic therapies, are sub-
stantial and unprecedented (1). The full life-cycle
of HCV 1is now easily accessible to reliable and
reproducible in vitro study. While the use of cellu-
lar clones represents the current vanguard, other
more-restricted, yet more-focused, systems are still
widely used and are delivering important data.
Allied technologies, such as genomics and pro-
teomics, will augment these methods further, pro-
viding enhanced detail of virus—host interactions
and the molecular basis of resistance and progres-
sion to chronicity, thus illuminating putative tar-
gets of new anti-virals and vaccines. There is still
scope for improvement in HCVcc systems, how-
ever. Higher viral titres and a broader range of

host cells are desirable, while extension of HCVce
to genotypes other than 2a is crucial. It has
recently been established that primary and pas-
saged cultures of human fetal hepatocytes (HFH)
support the replication of unmodified HCV (.e.
devoid of adaptive mutations) for up to two months
(28), either following the transfection of consensus
transcripts of HCV strain H77 (genotype 1a; 51) or
infection with patient sera containing HCV of var-
ious genotypes, including la, 1b, 2a, 2b and 3.
Progeny viruses were also released into the culture
supernatants and proved to be infectious. This sys-
tem is extremely stable and reproducible, as HFH
cells maintain their phenotype for months and
express LDL receptor and CD81, which play
important roles in the HCV life-cycle.

In Vitro & Clinical Findings in HCV
Research

Recap

A great many examples of crucial in vitro and clin-
ical findings concerning HCV infection have
already been discussed above. Infected primary
cell lines implicated the LDL receptor in HCV
entry. Subgenomic and full-length replicon sys-
tems have elucidated:

— the subcellular localisation of HCV proteins and
their assembly into VLPs;

— the functions of wild-type and mutant HCV pro-
teins;

— the effects of HCV proteins on host-cell growth
and gene expression;

— the functional roles of HCV UTR stem-loops;

— the anti-viral effects and modes of action of IFN
and ribavirin;

— the role of CD26 in HCV infection;

— the effects of HCV proteins on IFN-induced
intracellular signalling;

— the determinants of membrane association of
the viral polymerase;

— various properties and characteristics of the
HCV NS3-NS4A complex;

— the roles of specific HCV proteins and genome
segments, including UTRs and other cis-acting
elements in replication;

— virus—host interactions;

— the identification and testing of anti-viral
agents; and

— the association of the HCV core protein with
host lipids.
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HCV VLPs and HCVpp have greatly informed our
understanding of:

— HCV attachment, membrane fusion and entry;

— virion assembly, genome encapsidation and
virus—host interactions;

— the involvement of CD81, SR-BI, LDLRs, HSPGs
and CLDN-1 in the viral life-cycle;

— the genome-wide host-cell response following
HCYV binding to human liver and hepatoma cells;

— antigen processing and presentation in human
dendritic cells; and

— antibody-mediated neutralisation and other
aspects of humoral immunity in acute and
chronic hepatitis C patients.

HCV VLPs and HCVpp have also facilitated the
screening of anti-HCV agents and potential vac-
cine development, including the mapping of enve-
lope protein neutralisation epitopes, which was
crucial for vaccine studies.

HCVcc have augmented and corroborated much
previous work with VLPs and HCVpp, and have fur-
ther informed our understanding of the roles of
clathrin vesicles, ApoC1, and many host genes in the
HCV life-cycle. Human studies were vital from the
inception of HCV research, demonstrating that ‘non-
A, non-B hepatitis’ (NANBH) was the salient com-
plication of transfusion therapy, defining NANBH’s
natural history, identifying surrogate markers of the
disease, such as alanine aminotransferase, and, as a
result of these studies, lowering the incidence of
transfusion-associated NANBH, even prior to the
definitive identification of HCV.

Studies of people with hepatitis C have been,
and continue to be, extremely valuable and inform-
ative (reviewed by Seeff [157]). Several clinical
studies, some of which utilised human liver biop-
sies, and some of which were prospective (thus
enabling the study of early infection in asympto-
matic HCV-positive people), have elucidated the
roles of cellular and humoral immunity during
acute HCV infection and viral clearance, and fol-
lowing recovery. These studies revealed the impor-
tance of HLA alleles, the role of IFNs, and the
genetic mechanisms and miRNAs associated with
infection, progression to fibrosis, viral clearance
and the outcomes of IFN therapy, in both respon-
ders and non-responders.

The power and potential of ‘alternatives’ —
further examples
Analysis of HCV structure and physical properties

Electron microscopy and immunoelectron micros-
copy of patient sera are helping to inform our

understanding of the structure and morphogenesis
of the virus (158-163), and molecular analyses of
human sera have revealed the association of HCV
virions with lipoproteins and immunoglobulins
(164-170). Although some subsequent infectivity
studies have involved the use of chimpanzees (171,
172), there are many other studies that have
described the association of lipoproteins and
apolipoproteins with HCV (and the consequences
of this association), that did not use chimpanzees.
These were based instead, for example, on HCVpp
studies (116, 118, 119) and physiochemical,
immunological and electron microscopical studies
of human sera (165, 169, 173—-175). HCVcc systems
have also been useful, by revealing, for example,
the determinants of interactions between HCV
NS5A and HCV core proteins, and their subcellu-
lar localisations (176).

Pathogenesis/viral clearance and persistence

Prospective clinical studies permit the study of
early events in infection and at disease onset,
including the recognition of spontaneous resolu-
tion, and allow the pairing of ‘matched controls’ for
comparative studies. Both prospective and retro-
spective studies have generated important data on
disease progression, such as rates of fibrosis,
cirrhosis, HCC, and death. So-called retrospective-
prospective studies take advantage of serendipi-
tous discoveries of distant, well-characterised,
point-source outbreaks of hepatitis C, where data
from all infected persons are recoverable and the
subjects can be followed prospectively. Some of
these studies have allowed follow-up periods of up
to 35 years (177), and have revealed that infected
children and young women had the highest rates of
spontaneous resolution, along with the lowest
rates of development of cirrhosis and HCC, and of
death from liver disease. These studies also
revealed that individuals who are immune sup-
pressed, and those who are infected but who have
normal aminotransferase levels, progress at very
different rates (157). Human studies have also
shown that:

— there might be no correlation of HCV-specific T-
cell responses with viral clearance, in contrast
to previous reports (178);

— strong CD8* T-cell responses are not sufficient
to prevent progression to chronicity (179-181);

— mutations in HLA class I-restricted epitopes
targeted by CD8™ cells occur early in HCV infec-
tion and are associated with persistence (182);

— particular HLA class I alleles were associated
with viral clearance or persistence in a cohort of
women accidentally infected with HCV (183);
and
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— an increase in the diversity of the viral popula-
tion (evolution of quasispecies) is associated
with progression to chronicity via immune eva-
sion (184).

Human and in vitro studies have revealed that inad-
equate cellular immunity might be a factor in HCV
persistence and the development of chronic hepatitis
C (185, 186), and that viral employment of ‘decoy’
antigens (187) or inhibition of host IFN responses
could be involved in this process (188, 189).

Studies of neutralising antibodies, immune
escape and the roles of immune responses in HCV
infection and clearance have been, and continue to
be, greatly aided by clinical and in vitro
approaches. Some HCV-infected patients with pri-
mary antibody deficiencies have accelerated rates
of disease progression (190). Observations that
HCYV infection might not induce protective immu-
nity were made in a study of thalassaemic children
(191), while studies with hypogammaglobuli-
naemic humans indicated that antibodies were not
required for HCV clearance (192) — a finding cor-
roborated in a prospective study of prisoners, some
of whom spontaneously cleared HCV, but never
developed anti-HCV antibodies (178, 193, 194).

HCVecc systems have revealed the role of choles-
terol and sphingolipid in HCV infection and virion
maturation (176), the molecular mechanisms by
which the HCV core protein triggers hepatitis-
associated neoangiogenesis (195), and the mecha-
nism of the role of HCV NS2 protein in viral
assembly (196). Magnetic absorption of HCV viri-
ons (HCVecc) and/or HCVpp to nanoparticles
enables a synchronous infection to be induced via
the natural entry route of HCV. This is important
for both the accurate determination of the kinetics
of viral entry and subsequent viral and cellular
events (including the early stages of infection), and
the improvement of efficiency and infectivity (197).
Microarray studies have also been used in tandem
with siRNA analyses and with HCVce systems, in
order to identify genes whose expression is altered
by HCV, which are important to pathogenesis, and
which contribute to hepatocellular damage.
Arginase I, for example, is elevated following HCV
infection, and stimulates hepatocellular growth
(198). Serial analysis of gene expression (SAGE)
techniques have also been applied to the study of
gene expression profiles in human hepatitis C and
HCC livers. These techniques have identified
many different genes and genetic pathways
involved in HCV infection and pathogenesis (199).

Various in vitro methods, allied with replicon
and HCVcc systems, have permitted the study of
the HCV NS2/3 and NS2 proteins, previously
shown by HCVec approaches to be necessary for
HCV virion assembly and viral infectivity (200,
201). Via mutagenesis and ensuing alterations in
NS2/3 degradation, the importance of NS2 regula-
tion for the HCV viral life-cycle, and the identifica-

tion of specific regions and residues of NS2 for
infectious virion assembly, were demonstrated
(202, 203). High-throughput (HT) mutational
analyses, making use of HCVcc, have also been
applied to the entire HCV genome. This has per-
mitted the profiling of HCV cis-elements and pro-
tein domains, confirming previously identified
functional regions of the HCV genome (204). In
vitro approaches have also revealed a number of
different mechanisms by which viral proteins
mediate IFN resistance (205). The tagging of HCV
non-enveloped capsid-like particles with a fluores-
cent protein has permitted observation of the
intracellular trafficking, in hepatocytes and vari-
ous human immune cells, of naked capsids via live
microscopy (206). This should increase our under-
standing of their biological significance and their
role in pathogenesis (206). Cell culture, patient-
based research, and a variety of in vitro data, have
all highlighted a role for the HCV Alternative
Reading Frame Protein (ARFP; also known as F
[frameshift] and core+1) in the HCV life-cycle, and
implicated it in HCV-related advanced liver dis-
ease and HCC (207).

Genome-wide association studies (GWASs) are
accelerating, thanks to improved genotyping and
single-nucleotide polymorphism (SNP)-discovery
technologies. By scanning maps of genetic markers
to identify differences in allele frequency between
hepatitis C patients and appropriate controls,
genomic regions affecting HCV infection and hepa-
titis C pathology can be identified, adding impor-
tant new data to our knowledge of HCV
pathophysiology and pharmacology (208). For
example, a GWAS involving several hundred
patients scanned more than 12,000 genes to dis-
cover greater than 1,600 SNPs associated with
advanced HCV-related fibrosis (209). Of these, two
SNPs were considered to be significantly associated
with advanced fibrosis, and another SNP with
decreased risk of advanced fibrosis. These markers
should be important in predicting fibrosis risk in
HCV patients. Furthermore, 361 of the discovered
SNPs were selected for ‘signature building’, leading
to a predictive signature for cirrhosis in Caucasian
patients (208), and a seven-gene signature to differ-
entiate high risk and low risk of cirrhosis (210).

Proteomic technologies have had a major impact
in advancing virology in general, and are believed
to be a key approach to elucidating the pathogene-
sis of many viruses, including HCV (reviewed by
Liu et al. [211]). For example, MALDI-TOF mass
spectrometry and liquid chromatography—tandem
mass spectrometry (LC-MS/MS) have been used to
analyse hepatoma cell lines to identify proteins
involved in the pathogenesis of HCV that con-
tribute to its carcinogenic properties, and (in con-
junction with the yeast two-hybrid system) to
identify host receptors and other virus protein—
host protein interactions (211).
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Host factors and response

Prospective and retrospective clinical studies have
also identified numerous host factors that influ-
ence disease progression. These include:

— age (4, 177, 212-214), gender (4, 213, 215-217)
and race (218, 219);

— genetic polymorphisms in HLA (220, 221) and
profibrogenic cytokine (222, 223) genes;

— metabolic factors, in patients with steatosis
(224, 225), diabetes (226, 227) and obesity (228,
229); and

— co-infection/co-morbidity associated with HIV
(230—234), hepatitis B (235, 236), schistosomia-
sis (237, 238) and haemochromatosis (239), as
well as smoking (240, 241) and high alcohol
intake (242-244).

Microarray studies of human liver core needle
biopsies have been “extensively utilised for global
transcriptional profiling of the host response to
HCV infection from a variety of disease states
including fibrosis, cirrhosis and hepatocellular car-
cinoma” (245-251; as reviewed by Walters & Katze
[6]). RNAIi screening, by using siRNAs, permits the
analysis of specific ‘knockdowns’ of host genes, in
order to determine their effects on (and the role of
those genes in) viral infection (252, 253). By cou-
pling an siRNA-based cell-array screening system
with HT fluorescence microscopy, an automated
method of analysing images of single cells has been
developed that can identify cells with altered HCV
infections (254, 255). This permits the quantifica-
tion of viral replication and the identification of
genes involved in replication and viral entry. In
vitro methods have provided considerable data on
the importance of microRNAs (miRNAs) in the
liver during HCV infection. For example, they
have been shown to regulate the expression of
HCV transcripts, acting as important cofactors or
inhibitors, assembling into RNA-induced silencing
complexes. They are affected by IFNs, and so act as
targets for anti-viral therapies, and they differ
between non-responders and early-responders to
IFN therapy (256). A functional screen of a small
hairpin RNA (shRNA) library, in concert with
siRNA knockdown experiments, identified cellular
factors involved in regulating the replication of
HCV subgenomic replicons. The host-cell lipid
kinase PI4KIII-alpha (produced by the PI4KA
gene) was shown to be essential for the replication
of all HCV genotypes tested (1a, 1b and 2a; 257).
The results of these studies are augmented and
corroborated by other in vitro and clinical analy-
ses, which establish the genes/proteins as genuine
therapeutic targets (e.g. 258-261). These include,
for example, real-time quantitative RT-PCR, a
technique that has permitted very accurate and
quantitative gene expression analysis in hepatitis

C patients, leading to “new insights into the role of
gene networks and regulatory pathways” in hepa-
titis C and the development of fibrosis and HCC
(246, 247). This technique has been used to estab-
lish that DNA methylation of specific genes is an
important event preceding cirrhosis and HCC (208,
262—-267). It has also facilitated the investigation
of differential miRNA expression in liver tissue
from uninfected and HCV-infected patients, which
revealed that pathways relating to immune
response, antigen presentation, cell-cycle, protea-
some, and lipid metabolism were each activated by
HCV (268).
Replicon systems have demonstrated that:

— oxidative stress induces an anti-HCV status via
the activation of the MEK-ERK1/2 signalling
pathway, in response to various anti-HCV
nutrients and agents (269—-274);

— proanthocyanidin from blueberry leaves
inhibits HCV RNA expression, possibly medi-
ated via heterogeneous nuclear ribonucleopro-
tein (hnRNP) A2/B1 (275);

— the 17-allylaminogeldanamycin (17-AAG)
inhibitor of heat-shock protein 90 (Hsp90) sup-
presses HCV replication in a dose-dependent
manner (276);

— unsymmetrical dialkyl-hydroxynaphthalenoyl-
benzothiadiazines 2 and 3 inhibit HCV replica-
tion (277); and

— honeysuckle extracts (pheophytin a from
Lonicera hypoglauca Miq.) have potent anti-
HCV properties via inhibition of NS3, that are
synergistic with INF-alpha-2a (278).

HCVcc systems have revealed that:

— the cytokine oncostatin M (OSM; a member of
the IL-6 family) has an anti-HCV activity that
is synergistic with IFN-alpha (279); and

— the HCV genome encodes single-stranded RNA
(ssRNA) ligands of Toll-like receptor 7 (TLR7)
that significantly activate innate immunity and
induce IFN-alpha production (280).

Other in vitro investigations have elucidated the
mechanism of the anti-HCV action of cyclosporin,
and illustrated the essential role of the host
cyclophilin A (CyPA; 281) and the host SYNCRIP
(synaptotagmin-binding, cytoplasmic RNA-inter-
acting protein; 282) in HCV replication.

Development and improvement of therapies and
vaccines: Identification of therapeutic targets

Rational drug-design, with regard to ‘Specifically
Targeted Anti-viral Therapy for hepatitis C
(STAT-C), has been made possible via the crys-
tallisation and determination of high-resolution
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three-dimensional (3-D) structures of key viral
enzymes, often complexed with their substrates,
cofactors and/or inhibitors, the activities of which
are tested by specific in vitro assays (summarised
by Locarnini & Bartholomeusz [283]). The yeast
two-hybrid system, with HCV core protein used as
‘bait’ to screen a human liver cDNA expression
library, has been used to identify cellular proteins
that interact with the HCV core protein (284).

Gondeau et al. comprehensively reviewed cellu-
lar models in current use for the screening and
development of anti-HCV agents, highlighting
their utility and productivity. The review listed
HCVpp, HCVcc, subgenomic and productive repli-
cons, and primary and immortalised hepatocyte
cultures as being used to test more than 55 differ-
ent anti-viral agents (285). It is asserted that the
use of these models will “allow the prediction of the
pharmacokinetics of the new chemical entities as
well as possible drug interactions and liver toxic-
ity.”

In vitro assays have established that cyclophilin
B (CyPB), a normal cellular protein, boosts HCV
replication by increasing the activity of the HCV
polymerase via improvement of its RNA-binding
capacity (286). This has important consequences
for the design and development of anti-HCV drugs,
as a number of HCV inhibitors, such as cyclosporin
and related derivatives, function by sequestering
cyclophilins (286-289). HT mutational analyses
with HCVcc have identified regions of the HCV
genome as being suitable candidates for therapeu-
tic and vaccine targets (204).

A new and superior method of screening and iden-
tifying innate immunostimulatory molecules, based
on primary leukocyte cultures co-cultured with
HCV replicon-expressing cells, has been recently
announced, which should aid the development of
HCYV therapeutics (290). A replicon-based HT assay
has been developed that permits the screening of
inhibitors of HCV genotypes la and 1b, and the
determination of inhibitor cytotoxicity, within a sin-
gle well (291). A medium-throughput assay based
on flow cytometry, which is able to screen for entry
inhibitors that impede the interaction between
HCV E2 envelope glycoprotein and host-cell CD81
receptors, is also available (292). A 3-D hollow-fibre
culture system, incorporating an immortalised pri-
mary human hepatocyte (HuSE/2) cell line, has
been created. This system permits the study of
blood-borne HCV from patients, as well as the long-
term proliferation of the virus and production of
infectious virions (293). The developers state that it:
“reproduces strain-dependent events reflecting viral
dynamics and virus—cell interactions at the early
phase of blood-borne HCV infection, ...and allows
the development of new anti-HCV strategies spe-
cific to various HCV strains.”

A recently established reporter cell-line, which
utilises secreted alkaline phosphatase (SEAP) as

the reporter molecule, enables much more rapid
and sensitive assays of HCV infectivity and repli-
cation to be performed, as compared to previous
time-consuming and labour-intensive methods
(140). It also facilitates the investigation of virus
entry and the HT screening of entry inhibitors and
other anti-viral agents (294). This method is
advantageous, because it allows cell integrity to be
maintained, by enabling reporter molecule meas-
urement in the culture medium. It can also be used
with any inter-genotypic or intra-genotypic deriva-
tive of HCV JFHI1, and potentially with other
future cell culture-infectious viral isolates. The
screening of human siRNA libraries and miRNA
expression profiling have identified hundreds of
genes that support HCV replication, providing new
targets for anti-viral therapy and enabling the in
vitro testing of the effects on HCV replication of
inhibitors of those genes (295-298). In addition,
expression profiling has led to the discovery of spe-
cific miRNAs that are differentially expressed in
HCC/HCV-induced fibrosis/cirrhosis, as well as
their target genes (299-303).

The existence of antibodies that cross-neutralise
different genotypes of HCV, was demonstrated by
using the HCVpp system (119, 120, 122) — a find-
ing that should aid the design of vaccine strategies,
and which is permitting the determination of cor-
relates of protection (123).

Development and improvement of therapies and
vaccines: Assessment of treatment, vaccine efficacy
and toxicity

Clinical research is making progress toward estab-
lishing human biomarkers of HCV drug and vac-
cine efficacy and toxicity, which will lead to safer,
quicker and more-effective clinical trials. For
example, serum biomarkers of liver fibrosis have
already been discovered (304). SNP analysis of
human biological samples has characterised par-
ticular SNPs that indicate the likelihoods of suc-
cessful response to IFN therapy, spontaneous viral
clearance and progression to fibrosis (305, 306).
Microarray profiling of human tissue has provided
gene expression signatures for IFN treatment in
responders and non-responders, and identified
mechanisms of failed response (307-309).

A study performed with cell lines derived from
HCV patients, illustrated that expression levels of,
and polymorphisms in, the SOCS3 gene, represent
important biomarkers for the a priori prediction of
response to HCV anti-viral therapy (310).
Comparative studies of Caucasian and North
American Aboriginal populations revealed that
ethnicity might influence responses to IFN-alpha
(via IL-10 production; 311, 312), which could
explain the enhanced propensity of the latter
group to clear HCV infection (313). Another new



The use of chimpanzees in hepatitis C research

481

cell culture method has been developed to model
relapse after the end of IFN therapy, which
involves the use of IFN-alpha-resistant, genome-
length HCV RNA-harbouring cells (314). This
model has been used to assess alternative anti-
HCV agents and has shown that those with a dif-
ferent mode of action to that of IFN-alpha can
prevent relapse.

A fully-human modular immune in vitro con-
struct (MIMIC’) has been developed, which should
serve as a reliable and human-specific in vitro test
system for proposed HCV vaccines. By using white
blood cells from volunteer donors, it involves “opti-
mised PBMC culture systems via recombination of
distinct leukocyte components of the immune sys-
tem, T-cells, B-cells, and dendritic cells (DCs), at
ratios similar to those found at sites of in vivo lym-
phocyte activation” (315). Autologous DCs pulsed
with test vaccines are introduced to the cultures,
and the humoral and cell-mediated immune
responses induced by the vaccine candidate can be
studied. A ‘peripheral tissue equivalent’ (PTE)
module serves to model events at the vaccination
site and/or point of microbial attack, providing
data concerning the innate immune response in
terms of cytokine production/inflammation and
maturation of antigen-presenting cells; similarly, a
‘lymphoid tissue equivalent’ (LTE) module models
adaptive immunity/lymph node events, assessing
B-cell and T-cell activities and antibody produc-
tion. Advantages of the MIMIC system include its
capacity to test adjuvants, vaccine components and
complete vaccines, and its use to assess the quality
of established vaccines. Also, each well of the 96-
well plate provided, represents the immune system
of a specific individual human being — thus
reflecting human biological and immunological
diversity across the whole plate. The stated goals
of this system are to obviate preclinical, animal-
based vaccine tests and to identify optimal human
vaccine formulations. Given the performance of
this system to date, there is robust evidence that
its use will reduce the risk of adverse events in
clinical trials, elucidate why some vaccines work in
certain populations of people but not in others, and
address safety and immunogenicity issues.
Furthermore, this method is applicable, not just to
vaccines, but also to the immunotoxicological eval-
uation of other drugs and biologicals.

Mathematical models

Mathematical models have helped to further our
understanding of HCV dynamics and clinical
trial results in humans (reviewed by Shudo et al.
[316]). Based on data acquired from people
undergoing IFN-alpha treatment, the mechanism
of action and efficacy of IFN-alpha were eluci-
dated, along with the dynamics of HCV produc-

tion and clearance (317). Other mathematical
models have:

— revealed that both rapid and slow biological
processes occur following HCV infection, the
knowledge of which has impacted the use of
anti-virals in HCV patients (318);

— permitted the physiologically-based pharmaco-
kinetic modelling of putative new drugs, in
order to predict their properties in the human
body (e.g. 316, 319, 320);

— provided insights into the mode of action of rib-
avirin (321); and

— generated valuable data concerning the differ-
ent responses of diverse patient populations to
anti-viral therapy (245).

Discussion and Conclusions

This paper, together with the associated paper
(18), sought to critically evaluate claims of neces-
sity for the use of chimpanzees in hepatitis C
research. This is timely and of high importance,
due to the controversial nature of invasive chim-
panzee research (which is now practised only in
the USA), and the reintroduction of the Great Ape
Protection Act (GAPA) bill in the US House of
Representatives that seeks to end it. This bill has
significant consequences, not just for the 1,000
chimpanzees in US laboratories, but also for many
millions of people relying on science to provide
treatments and cures for hepatitis C and other dis-
eases.

Paper 1 (18) examined the scientific validity of
the chimpanzee model. By directly assessing the
claims of advocates of chimpanzee HCV research
that it made crucial contributions to past progress
— claims that have been subject to little critical
analysis to date — the chimpanzee model’s pro-
posed critical role in future investigations can
begin to be gauged. The conclusions of the review
were that these assertions were exaggerated and
unjustifiable. While chimpanzees have been
involved in many areas of HCV research, the con-
tribution of chimpanzee data to the advancement
of knowledge and to tangible progress was negligi-
ble, and was eclipsed by that of other methods of
inquiry. When considered alongside acknowledged
and serious scientific caveats of the chimpanzee
model of hepatitis C, as well as ethical, economic
and practical caveats of chimpanzee use in gen-
eral, it was concluded that the chimpanzee model
in HCV research must now be considered redun-
dant.

This complementary review augments the find-
ings of the first paper, by illustrating how non-
chimpanzee methods have contributed to the
development of important in vitro methods for
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studying the HCV life-cycle. While full life-cycle
infectious cellular clones represent the long
awaited and most comprehensive in vitro system
for many aspects of HCV study, all the in vitro
methods employed, including HCV-infected cul-
tured primary and immortalised cells, infectious
molecular clones, subgenomic and genomic repli-
cons, and virus-like particles and pseudoparticles,
have added greatly to the body of knowledge on the
hepatitis C virus and hepatitis C pathology, as well
as enhancing progress toward new treatments.
Furthermore, this review describes how full life-
cycle infectious clones (HCVce), which were
urgently called for by the research community for
decades, can provide all the necessary data to facil-
itate the development and testing of HCV thera-
pies, when supported by clinical, epidemiological,
ex vivo and in silico methods.

It is now possible to investigate the complete
HCV life-cycle, from host-cell attachment to
release of progeny, immune responses to infection,
the roles of host factors, identification of therapeu-
tic targets, testing of new therapies and vaccines,
and so on, in a human, and therefore completely
relevant, context. While it must be acknowledged
that all methods of investigation have inherent
imperfections and caveats, including the use of
human cultured cells per se, and the biological dif-
ferences between the use of HCV in vitro in human
cells and the in vivo situation in humans, the evi-
dence suggests that the use of human cells in vitro
1s much more relevant to human biology than the
use, albeit in vivo, of another animal entirely (i.e.
the chimpanzee) as a ‘model’ organism. Notably,
while chimpanzee use is declining markedly (in
2008, the NIH funded 220 human hepatitis trials,
as compared to just 35 chimpanzee projects, the
latter having decreased by 50% over the past 30
years), the use of the various human-cell culture
systems in the study of HCV is continuing to pro-
duce large amounts of important data, particularly
when used alongside other methods.

In summary, there is a very strong argument
against any scientific requirement for the use of
chimpanzees in hepatitis C research, and an
equally strong argument in support of the concen-
tration of research effort in human-specific clinical
and in vitro technologies. Prohibiting chimpanzee
use would accelerate progress by releasing extra
funds for more-productive and scientifically-supe-
rior alternatives, benefiting the hundreds of mil-
lions of human beings infected with, or at risk of
being infected by, HCV, as well as for the approxi-
mate 1,000 chimpanzees in US laboratories.
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